5 research outputs found

    Using scenario modelling for adapting to urbanization and water scarcity: towards a sustainable city in semi-arid areas

    Get PDF
    Sustainable development on a global scale has been hindered by urbanization and water scarcity, but the greatest threat is from decision-makers ignoring these challenges, particularly in developing countries. In addition, urbanization is spreading at an alarming rate across the globe, affecting the environment and society in profound ways. This study reviews previous studies that examined future scenarios of urban areas under the challenges of rapid population growth, urban sprawl and water scarcity, in order to improve supported decision-making (SDM). Scholars expected that the rapid development of the urbanization scenario would cause resource sustainability to continually be threatened as a result of excessive use of natural resources. In contrast, a sustainable development scenario is an ambitious plan that relies on optimal land use, which views land as a limited and non-renewable resource. In consequence, estimating these threats together could be crucial for planning sustainable strategies for the long term. In light of this review, the SDM tool could be improved by combining the cellular automata model, water evolution and planning model coupled with geographic information systems, remote sensing and criteria analytic hierarchical process modelling. Urban planners could optimize, simulate and visualize the dynamic processes of land-use change and urban water, using them to overcome critical conditions

    Urban Growth Forecast Using Machine Learning Algorithms and GIS-Based Novel Techniques: A Case Study Focusing on Nasiriyah City, Southern Iraq

    No full text
    Land use and land cover changes driven by urban sprawl has accelerated the degradation of ecosystem services in metropolitan settlements. However, most optimisation techniques do not consider the dynamic effect of urban sprawl on the spatial criteria on which decisions are based. In addition, integrating the current simulation approach with land use optimisation approaches to make a sustainable decision regarding the suitable site encompasses complex processes. Thus, this study aims to innovate a novel technique that can predict urban sprawl for a long time and can be simply integrated with optimisation land use techniques to make suitable decisions. Three main processes were applied in this study: (1) a supervised classification process using random forest (RF), (2) prediction of urban growth using a hybrid method combining an artificial neural network and cellular automata and (3) the development of a novel machine learning (ML) model to predict urban growth boundaries (UGBs). The ML model included linear regression, RF, K-nearest neighbour and AdaBoost. The performance of the novel ML model was effective, according to the validation metrics that were measured by the four ML algorithms. The results show that the Nasiriyah City expansion (the study area) is haphazard and unplanned, resulting in disastrous effects on urban and natural systems. The urban area ratio was increased by about 10%, i.e., from 2.5% in the year 1992 to 12.2% in 2022. In addition, the city will be expanded by 34%, 25% and 19% by the years 2032, 2042 and 2052, respectively. Therefore, this novel technique is recommended for integration with optimisation land use techniques to determine the sites that would be covered by the future city expansion

    Comprehensive Vulnerability Assessment of Urban Areas Using an Integration of Fuzzy Logic Functions: Case Study of Nasiriyah City in South Iraq

    No full text
    Globally, urbanisation has been the most significant factor causing land use and land cover changes due to accelerated population growth and limited governmental regulation. Urban communities worldwide, particularly in Iraq, are on the frontline for dealing with threats associated with environmental degradation, climate change and social inequality. However, with respect to the effects of urbanization, most previous studies have overlooked ecological problems, and have disregarded strategic environmental assessment, which is an effective tool for ensuring sustainable development. This study aims to provide a comprehensive vulnerability assessment model for urban areas experiencing environmental degradation, rapid urbanisation and high population growth, to help formulate policies for urban communities and to support sustainable livelihoods in Iraq and other developing countries. The proposed model was developed by integrating three functions of fuzzy logic: the fuzzy analytic hierarchy process, fuzzy linear membership and fuzzy overlay gamma. Application of the model showed that 11 neighbourhoods in the study area, and more than 175,000 individuals, or 25% of the total population, were located in very high vulnerability regions. The proposed model offers a decision support system for allocating required financial resources and efficiently implementing mitigation processes for the most vulnerable urban areas

    A Novel Approach Based on Machine Learning and Public Engagement to Predict Water-Scarcity Risk in Urban Areas

    No full text
    Climate change, population growth and urban sprawl have put a strain on water supplies across the world, making it difficult to meet water demand, especially in city regions where more than half of the world’s population now reside. Due to the complex urban fabric, conventional techniques should be developed to diagnose water shortage risk (WSR) by engaging crowdsourcing. This study aims to develop a novel approach based on public participation (PP) with a geographic information system coupled with machine learning (ML) in the urban water domain. The approach was used to detect (WSR) in two ways, namely, prediction using ML models directly and using the weighted linear combination (WLC) function in GIS. Five types of ML algorithm, namely, support vector machine (SVM), multilayer perceptron, K-nearest neighbour, random forest and naïve Bayes, were incorporated for this purpose. The Shapley additive explanation model was added to analyse the results. The Water Evolution and Planning system was also used to predict unmet water demand as a relevant criterion, which was aggregated with other criteria. The five algorithms that were used in this work indicated that diagnosing WSR using PP achieved good-to-perfect accuracy. In addition, the findings of the prediction process achieved high accuracy in the two proposed techniques. However, the weights of relevant criteria that were extracted by SVM achieved higher accuracy than the weights of the other four models. Furthermore, the average weights of the five models that were applied in the WLC technique increased the prediction accuracy of WSR. Although the uncertainty ratio was associated with the results, the novel approach interpreted the results clearly, supporting decision makers in the proactive exploration processes of urban WSR, to choose the appropriate alternatives at the right time

    A Novel Approach Based on Machine Learning and Public Engagement to Predict Water-Scarcity Risk in Urban Areas

    No full text
    Climate change, population growth and urban sprawl have put a strain on water supplies across the world, making it difficult to meet water demand, especially in city regions where more than half of the world’s population now reside. Due to the complex urban fabric, conventional techniques should be developed to diagnose water shortage risk (WSR) by engaging crowdsourcing. This study aims to develop a novel approach based on public participation (PP) with a geographic information system coupled with machine learning (ML) in the urban water domain. The approach was used to detect (WSR) in two ways, namely, prediction using ML models directly and using the weighted linear combination (WLC) function in GIS. Five types of ML algorithm, namely, support vector machine (SVM), multilayer perceptron, K-nearest neighbour, random forest and naïve Bayes, were incorporated for this purpose. The Shapley additive explanation model was added to analyse the results. The Water Evolution and Planning system was also used to predict unmet water demand as a relevant criterion, which was aggregated with other criteria. The five algorithms that were used in this work indicated that diagnosing WSR using PP achieved good-to-perfect accuracy. In addition, the findings of the prediction process achieved high accuracy in the two proposed techniques. However, the weights of relevant criteria that were extracted by SVM achieved higher accuracy than the weights of the other four models. Furthermore, the average weights of the five models that were applied in the WLC technique increased the prediction accuracy of WSR. Although the uncertainty ratio was associated with the results, the novel approach interpreted the results clearly, supporting decision makers in the proactive exploration processes of urban WSR, to choose the appropriate alternatives at the right time
    corecore